Codeforces 175 A

 

A. Slightly Decreasing Permutations
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Permutation p is an ordered set of integers p1,  p2,  …,  pn, consisting of n distinct positive integers, each of them doesn’t exceed n. We’ll denote the i-th element of permutation p as pi. We’ll call number n the size or the length of permutation p1,  p2,  …,  pn.

The decreasing coefficient of permutation p1, p2, …, pn is the number of such i (1 ≤ i < n), that pi > pi + 1.

You have numbers n and k. Your task is to print the permutation of length n with decreasing coefficient k.

Input

The single line contains two space-separated integers: n, k (1 ≤ n ≤ 105, 0 ≤ k < n) — the permutation length and the decreasing coefficient.

Output

In a single line print n space-separated integers: p1, p2, …, pn — the permutation of length n with decreasing coefficient k.

If there are several permutations that meet this condition, print any of them. It is guaranteed that the permutation with the sought parameters exists.

Sample test(s)
input
5 2
output
1 5 2 4 3
input
3 0
output
1 2 3
input
3 2
output
3 2 1

 

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;


int main()
{
    int n,k;
    cin>>n>>k;
    cout<<(k+1);
    for(int i=k;i>0;i--)
      cout<<" "<<i;
    for(int i=k+2;i<=n;i++)
      cout<<" "<<i;
    cout<<endl;
    return 0;
}

本文链接:Codeforces 175 A

转载声明:本站文章若无特别说明,皆为原创,转载请注明来源:Rexdf,谢谢!^^


This entry was posted in ACM and tagged . Bookmark the permalink.

Leave a Reply

Your email address will not be published.

*

:zsmilebig: :zsadbig: :zwiredbig: :zgreenhappy: more »

This site uses Akismet to reduce spam. Learn how your comment data is processed.